机器学习

机器学习

书籍

机器学习经典书籍小结

《数学之美》;作者吴军大家都很熟悉。这本书主要的作用是引起了我对机器学习和自然语言处理的兴趣。里面以极为通俗的语言讲述了数学在这两个领域的应用。

《Programming Collective Intelligence》(中译本《集体智慧编程》);作者Toby Segaran也是《Beautiful Data : The Stories Behind Elegant Data Solutions》(《数据之美:解密优雅数据解决方案背后的故事》)的作者。这本书最大的优势就是里面没有理论推导和复杂的数学公式,是很不错的入门书。目前中文版已经脱销,对于有志于这个领域的人来说,英文的pdf是个不错的选择,因为后面有很多经典书的翻译都较差,只能看英文版,不如从这个入手。还有,这本书适合于快速看完,因为据评论,看完一些经典的带有数学推导的书后会发现这本书什么都没讲,只是举了很多例子而已。

《统计学习方法》;作者李航,是国内机器学习领域的几个大家之一,曾在MSRA任高级研究员,现在华为诺亚方舟实验室。书中写了十个算法,每个算法的介绍都很干脆,直接上公式,是彻头彻尾的“干货书”。每章末尾的参考文献也方便了想深入理解算法的童鞋直接查到经典论文;本书可以与上面两本书互为辅助阅读。

《Machine Learning》(《机器学习》);作者TomMitchell[2]是CMU的大师,有机器学习和半监督学习的网络课程视频。这本书是领域内翻译的较好的书籍,讲述的算法也比《统计学习方法》的范围要大很多。据评论这本书主要在于启发,讲述公式为什么成立而不是推导;不足的地方在于出版年限较早,时效性不如PRML。但有些基础的经典还是不会过时的,所以这本书现在几乎是机器学习的必读书目。

《Pattern Classification》(《模式分类》第二版);作者Richard O. Duda[5]、Peter E. Hart、David。模式识别的奠基之作,但对最近呈主导地位的较好的方法SVM、Boosting方法没有介绍,被评“挂一漏万之嫌”。

《Pattern Recognition And Machine Learning》;作者Christopher M. Bishop[6];简称PRML,侧重于概率模型,是贝叶斯方法的扛鼎之作,据评“具有强烈的工程气息,可以配合stanford 大学 Andrew Ng 教授的 Machine Learning 视频教程一起来学,效果翻倍。”

有人推荐,学习机器学习的话可以先读《统计学习方法》和《统计学习基础》打底,这样就包含了大部分的算法,然后再深入研究某个算法。我觉得,我在上面列出的四本经典书籍都应该通读一遍。孔子云“学而不思则罔,思而不学则殆”,我认为,学习、思考、实践不可缺一,学习的同时要加强算法代码的实现和其他方面比如并行化、使用场景等的思考。

工具